

General Certificate of Education

Mathematics 6360

MPC2 Pure Core 2

Mark Scheme

2006 examination – June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key To Mark Scheme And Abbreviations Used In Marking

М	mark is for method				
m or dM	mark is dependent on one or more M marks and is for method				
Α	mark is dependent on M or m marks and is for accuracy				
В	mark is independent of M or m marks an	nd is for method	d and accuracy		
E	mark is for explanation				
or ft or F	follow through from previous				
	incorrect result	MC	mis-copy		
CAO	correct answer only	MR	mis-read		
CSO	correct solution only	RA	required accuracy		
AWFW	anything which falls within	FW	further work		
AWRT	anything which rounds to	ISW	ignore subsequent work		
ACF	any correct form	FIW	from incorrect work		
AG	answer given	BOD	given benefit of doubt		
SC	special case	WR	work replaced by candidate		
OE	or equivalent	FB	formulae book		
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme		
-x EE	deduct x marks for each error	G	graph		
NMS	no method shown	с	candidate		
PI	possibly implied	sf	significant figure(s)		
SCA	substantially correct approach	dp	decimal place(s)		

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

AQA GCE Mark Scheme, 2006 June series -

Question	Solution	Marks	Total	Comments
<u>Question</u> 1(a)			i Utal	
-()	Area of sector = $\frac{1}{2}r^2\theta = \frac{1}{2} \times 5^2 \times \theta$	M1		$\frac{1}{2}r^2\theta$ seen or used
	$12.5\theta = 8.1 \Longrightarrow \theta = 0.648$	A1	2	AG Condone $\theta = 0.648$ used to show that
				area = 8.1
(b)	Arc = 5θ ;	M1		50
(~)	= 3.24 cm	A1		PI by a correct perimeter
	\Rightarrow Perimeter = 10 + arc = 13.24 cm	A1√	3	CSO Condone missing/wrong units;
				condone 3sf i.e. 13.2 if no obvious error NMS 3/3
	Total		5	
2(a)	$\frac{\sin B}{\sin B} = \frac{\sin 100}{\sin 100}$			
	4.8 12	M1		Use of the sine rule
	$\sin B = \frac{4.8 \sin 100}{12} \ [= 0.39(392)]$	m1		Rearrangement
	(angle ABC) = 23.19(8) {= 23.2°.}	A1	3	AG Need >1dp eg 23.19 or 23.20
	$(alight ABC) = 23.19(6) \{-23.2\}$	AI	5	AG Neeu > 1up eg 25.17 01 25.20
(b)	Angle $C = 80^{\circ} - 23.2^{\circ} = 56.8^{\circ}$	M1		Valid method to find a relevant angle eg C
(0)	1 ingle C 00 23.2 30.0	1011		(PI eg by correct sin C) or $23.2^{\circ}+10^{\circ}$
	Area of triangle = $0.5 \times 12 \times 4.8 \times \sin C$	M1		OE eg $0.5 \times 4.8 \times 12 \times \cos(B+10)$
	$\dots = 24.09.\dots = 24.1 \text{ cm}^2$. (to 3sf)	A1	3	Condone missing/wrong units
	Total		6	
3(a)	(Tenth term) = a + (10-1) d	M1		
	$\dots = 1 + 9(6) = 55$	A1	2	NMS or rep. addn. B2 CAO
				SC if M0 award B1 for 6 <i>n</i> –5 OE
	<i>n</i>	2.0		
(b)(i)	$S_n = \frac{1}{2} [2 + (n-1)6]$	M1		Formula for $\{S_n\}$ with either $a = 1$ or $d = 6$ substituted
	$S_{n} = \frac{n}{2} [2 + (n-1)6]$ $\frac{n}{2} [2 + 6n - 6] = 7400$			
	$\frac{n}{2}[2+6n-6] = 7400$	A1		Eqn formed with some expansion of
				brackets
	$3n^2 - 2n = 7400 \Longrightarrow 3n^2 - 2n - 7400 = 0$	A1	3	CSO AG
(ii)	(3n+148)(n-50) = 0	M1		Formula/factorisation OE
	$\Rightarrow n = 50$	A1	2	NMS single ans. 50 B2 CAO
			-	NMS 50 and -49.3(3) B1 CAO
	Total		7	

MPC2 (con	nt)
-----------	-----

				Athson a
PC2 (cont Question) Solution	Marks	Total	Mun, my mainscloud Comments Any valid method as far as term(s) in x
4(a)	$(1-2x)^4 = (1)^4 + 4(1)^3(-2x) +$	M1	<u>I Utar</u>	Any valid method as far as term(s) in x and term(s) in x^2 .
	$6(1^{2})(-2x)^{2} + [4(1)(-2x)^{3} + (-2x)^{4}]$ $= [1] - 8x + 24x^{2} + [-32x^{3} + 16x^{4}]$	A1		p = -8 Accept $-8x$ even within a series.
		A1	3	$q = 24$ Accept $24x^2$ even within a series.
(b)	x term is $\binom{9}{1} 2^8 x$	M1		OE
	Coefficient of x term is = $9 \times 2^8 = 2304 (=k)$	A1	2	Condone 2304 <i>x</i>
(c)	$(1-2x)^4 (2+x)^9 = (1+px+)(2^9+kx)$	M1		Uses (a) and (b) oe (PI)
	= =+ $kx + px(2^9) + \dots$	M1		Multiply the two expansions to get x terms
	Coefficient of x is $k + 512p$			
	= 2304 - 4096 = -1792	A1ft	3	ft on candidate's values of k and p . Condone $-1792x$
				SC If $0/3$ award B1ft for $p+k$ evaluated
	Total		8	
5(a)	$\log_a x = \log_a 6^2 - \log_a 3$	M1		One law of logs used correctly
	$\log_a x = \log_a \left(\frac{6^2}{3}\right)$	M1		A second law of logs used correctly
	$\log_a x = \log_a \frac{36}{3} \Longrightarrow x = 12$	A1	3	CSO AG
(b)	$\log_a y + \log_a 5 = 7 \Longrightarrow \log_a 5y = 7$	M1		
	$\Rightarrow 5y = a^7 \text{ or } y = \frac{1}{5}a^7 \text{ or } a = (5y)^{1/7}$	m1 A1	3	Eliminates logs Accept these forms
	Total		6	

				GCE Mark Scheme, 2006 June series - Munathscioud. Comments
			AQA (GCE Mark Scheme, 2006 June series - Umains
PC2 (cont	t)			Sour
Question	Solution	Marks	Total	Comments
6(a)(i) (ii)	<i>y</i> -coordinate of <i>A</i> is $27 - 3^{0}$; = 26 When <i>x</i> = 3, <i>y</i> = $27 - 3^{3} = 0 \Rightarrow B(3,0)$	M1A1 B1	2 1	AG; be convinced
(b)	h = 1	B1		РІ
	Area $\approx h/2\{\}$ $\{\}= f(0)+f(3)+2[f(1)+f(2)]$ $\{\}= "26" + 0 + 2(24 + 18)$	M1 A1√		OE summing of areas of the 'trapezia' on (a)(i) (Σ trap="25"+21+9)
	(Area ≈) 55	A1√	4	on $[42 + 0.5 \times "(a)(i)"]$
(c)(i)	$\log_{10} 3^x = \log_{10} 13$	M1		Takes ln or \log_{10} on both or $x = \log_3 13$
	$x \log_{10} 3 = \log_{10} 13$	m1		Use of $\log 3^x = x \log 3$ or $\log_3 13 = \frac{\lg 13}{\lg 3}$ OE (PI by $\log_3 13 = 2.335$ or better)
	$x = \frac{\lg 13}{\lg 3} = 2.334717\dots$ = 2.3347 to 4dp	A1	3	Must show that logarithms have been used
(ii)	$\{k=\}$ 14	B1	1	Condone $y = 14$; Accept final answer 14 with only zeros after decimal point eg 14.000
(d)(i)	Translation;	B1;		'Translation'/'translate(d)' B0 if more than one transformation
	$\begin{bmatrix} 0\\ -27 \end{bmatrix}$	B1	2	Accept full equivalent in words provided linked to 'translation/move/shift' and negative y-direction (Note: B0 B1 is possible)
(ii)	y •	B1		Correct shape (translation of given curve vertically downwards)
		B1		Only point of intersection with coord axes is on negative <i>y</i> -axis and curve is asymptotic to the negative <i>x</i> -axis
	1		2	
	Tota	1	15	

When x = 4, $\frac{dy}{dx} = 3(2) + \frac{16}{16} - 7 - 0$ B1 Total Comments Y22 (cont) Wen x = 4, $\frac{dy}{dx} = 3(2) + \frac{16}{16} - 7 - 0$ B1 A G B convinced (ii) $\frac{d^3y}{dx^2} = 3x + \frac{1}{2}x^{\frac{1}{2}} + 16x(-2)x^{-3} - 0$ MII A gover decreased by 1 (iii) $\frac{d^3y}{dx^2} = 3x + \frac{1}{2}x^{-\frac{1}{2}}$ A I: (iii) $\frac{d^3y}{dx^2} = 3x + \frac{1}{2}x^{-\frac{1}{2}}$ A I: (iii) $\frac{d^3y}{dx^2} = 3 - \frac{32}{4} = \frac{1}{4}$ MII A coc pt k = -2 (iii) $\frac{d^3y}{dx^2} = 3x + \frac{1}{2}x^{-\frac{1}{2}}$ A I: (iv) When $x = 4$, $\frac{d^2y}{dx^2} = \frac{3}{4} - \frac{32}{64} = \frac{1}{4}$ MII A coc pt k = -2 (iv) When $x = 4$, $\frac{d^2y}{dx^2} = \frac{3}{4} - \frac{32}{64} = \frac{1}{4}$ MII A coc pt k = -2 (iv) When $x = 4$, $\frac{d^2y}{dx^2} = \frac{3}{4} - \frac{32}{64} = \frac{1}{4}$ MII A coc pt k = -2 (iv) When $x = 4$, $\frac{d^2y}{dx^2} $		QA GCE Mark Scheme, 2006 June series			Smain Main
(i) $\lim_{x \to 0^{+}} \frac{1}{4x} = -\frac{1}{2}x^{-\frac{1}{2}} + \frac{1}{16}x^{-1} = 0$ (ii) $\lim_{x \to 0^{+}} \frac{\frac{1}{4x}}{\frac{1}{4x}} = \frac{1}{2}x^{-\frac{1}{2}} + \frac{1}{16}x(-2)x^{-3} = 0$ (iii) $\frac{\frac{1}{4y}}{\frac{1}{4x}} = \frac{3}{2}x^{-\frac{1}{2}}; -32x^{-3}$ (iii) $\frac{\frac{1}{4y}}{\frac{1}{4x}} = \frac{3}{2}x^{-\frac{1}{2}}; -32x^{-3}$ (iv) When $x = 4$, $\frac{\frac{1}{4y}}{\frac{1}{4x}} = \frac{3}{4} = \frac{3}{44}$ (iv) When $x = 4$, $\frac{\frac{1}{4y}}{\frac{1}{4x}} = \frac{3}{4} = \frac{3}{44}$ (iv) When $x = 4$, $\frac{\frac{1}{4y}}{\frac{1}{4x}} = \frac{3}{44} = \frac{1}{4}$ (iv) When $x = 4$, $\frac{\frac{1}{4y}}{\frac{1}{4x}} = \frac{3}{44} = \frac{1}{4}$ (iv) Mutual means $x = y''(4) > 0$ (iv) When $x = 4$, $\frac{\frac{1}{4y}}{\frac{1}{4x}} = \frac{3}{44} = \frac{1}{4}$ (iv) Mutual means $x = y''(4) > 0$ (iv) When $x = 4$, $\frac{\frac{1}{4y}}{\frac{1}{4x}} = \frac{3}{44} = \frac{1}{4}$ (iv) Subtrive transector $x = 4$, need evidence rather than just a statement: (M1) Correct ft conclusion with valid reason $E1\sqrt{1}$ [In both, condone absent statement $y'(4)=0$] (b)(i) At $P(1,8)$, $\frac{dy}{dx} = 3(1)^{\frac{1}{2}} + \frac{16}{1^2} - 7 = 12$ (ii) Gradient of normal $= -\frac{1}{12}$ (iii) Gradient of normal $= -\frac{1}{12}$ (iv) $y = 8 = -\frac{1}{12}(x-1) \Rightarrow 12y - 96 = -x + 1$ (iv) $y = 8 = -\frac{1}{12}(x-1) \Rightarrow 12y - 96 = -x + 1$ (iv) $y = -\frac{3}{\frac{x^2}{2}} + 16\frac{x'^{-1}}{-1} - 7x + c$ (iv) $\frac{x}{\sqrt{1}}$ (iv) $y = 2x^{\frac{3}{2}} - 16x^{-1} - 7x + c$ (iv) $\frac{x}{\sqrt{1}}$ (iv) $y = 2x^{\frac{3}{2}} - 16x^{-1} - 7x + c$ (iv) $\frac{x}{\sqrt{1}}$ (iv) $\frac{y}{\sqrt{1}} = \frac{2}{\sqrt{1}} + \frac{16}{\sqrt{1}} - 7x + c$ (iv) $\frac{y}{\sqrt{1}} = \frac{1}{\sqrt{1}} + \frac{16}{\sqrt{1}} - 7x + c$ (iv) $\frac{y}{\sqrt{1}} = \frac{1}{\sqrt{1}} + \frac{16}{\sqrt{1}} - 7x + c$ (iv) $\frac{y}{\sqrt{1}} = \frac{1}{\sqrt{1}} + $	PC2 (cont)				ISCIOUS
(i) $\lim_{x \to 0^{+}} \frac{1}{4x} = -\frac{1}{2}x^{-\frac{1}{2}} + \frac{1}{16}x^{-1} = 0$ (ii) $\lim_{x \to 0^{+}} \frac{\frac{1}{4x}}{\frac{1}{4x}} = \frac{1}{2}x^{-\frac{1}{2}} + \frac{1}{16}x(-2)x^{-3} = 0$ (iii) $\frac{\frac{1}{4y}}{\frac{1}{4x}} = \frac{3}{2}x^{-\frac{1}{2}}; -32x^{-3}$ (iii) $\frac{\frac{1}{4y}}{\frac{1}{4x}} = \frac{3}{2}x^{-\frac{1}{2}}; -32x^{-3}$ (iv) When $x = 4$, $\frac{\frac{1}{4y}}{\frac{1}{4x}} = \frac{3}{4} = \frac{3}{44}$ (iv) When $x = 4$, $\frac{\frac{1}{4y}}{\frac{1}{4x}} = \frac{3}{4} = \frac{3}{44}$ (iv) When $x = 4$, $\frac{\frac{1}{4y}}{\frac{1}{4x}} = \frac{3}{44} = \frac{1}{4}$ (iv) When $x = 4$, $\frac{\frac{1}{4y}}{\frac{1}{4x}} = \frac{3}{44} = \frac{1}{4}$ (iv) Mutual means $x = y''(4) > 0$ (iv) When $x = 4$, $\frac{\frac{1}{4y}}{\frac{1}{4x}} = \frac{3}{44} = \frac{1}{4}$ (iv) Mutual means $x = y''(4) > 0$ (iv) When $x = 4$, $\frac{\frac{1}{4y}}{\frac{1}{4x}} = \frac{3}{44} = \frac{1}{4}$ (iv) Subtrive transector $x = 4$, need evidence rather than just a statement: (M1) Correct ft conclusion with valid reason $E1\sqrt{1}$ [In both, condone absent statement $y'(4)=0$] (b)(i) At $P(1,8)$, $\frac{dy}{dx} = 3(1)^{\frac{1}{2}} + \frac{16}{1^2} - 7 = 12$ (ii) Gradient of normal $= -\frac{1}{12}$ (iii) Gradient of normal $= -\frac{1}{12}$ (iv) $y = 8 = -\frac{1}{12}(x-1) \Rightarrow 12y - 96 = -x + 1$ (iv) $y = 8 = -\frac{1}{12}(x-1) \Rightarrow 12y - 96 = -x + 1$ (iv) $y = -\frac{3}{\frac{x^2}{2}} + 16\frac{x'^{-1}}{-1} - 7x + c$ (iv) $\frac{x}{\sqrt{1}}$ (iv) $y = 2x^{\frac{3}{2}} - 16x^{-1} - 7x + c$ (iv) $\frac{x}{\sqrt{1}}$ (iv) $y = 2x^{\frac{3}{2}} - 16x^{-1} - 7x + c$ (iv) $\frac{x}{\sqrt{1}}$ (iv) $\frac{y}{\sqrt{1}} = \frac{2}{\sqrt{1}} + \frac{16}{\sqrt{1}} - 7x + c$ (iv) $\frac{y}{\sqrt{1}} = \frac{1}{\sqrt{1}} + \frac{16}{\sqrt{1}} - 7x + c$ (iv) $\frac{y}{\sqrt{1}} = \frac{1}{\sqrt{1}} + \frac{16}{\sqrt{1}} - 7x + c$ (iv) $\frac{y}{\sqrt{1}} = \frac{1}{\sqrt{1}} + $	· · · · · · · · · · · · · · · · · · ·		Marks	Total	Comments
(ii) $\begin{vmatrix} 16 \\ x^2 $	7(a)(i)	When $x = 4$, $\frac{dy}{dx} = 3(2) + \frac{16}{16} - 7 = 0$	B1	1	AG Be convinced
$\begin{aligned} \frac{d^2y}{dx^2} &= \frac{3}{2} x^{-\frac{1}{2}}; -32x^{-3} \\ (iv) When x = 4, \frac{d^2y}{dx^2} &= \frac{3}{4} - \frac{32}{64} &= \frac{1}{4} \\ M1 \\ A1x^{-1} \\ $	(ii)	<i>un</i> 10	B1	1	
(iv) When $x = 4$, $\frac{d^2y}{dx^2} = \frac{3}{4} - \frac{32}{64} = \frac{1}{4}$ Minimum since $y''(4) > 0$ (iv) When $x = 4$, $\frac{d^2y}{dx^2} = \frac{3}{4} - \frac{32}{64} = \frac{1}{4}$ Minimum since $y''(4) > 0$ [Alternative: Finds the sign of $y'(x)$ either side of the point where $x=4$, need evidence rather than just a statement: (M1) Correct ft conclusion with valid reason $E1 \sqrt{1}$ [In both, condone absent statement $y'(4)=0$] (b)(i) At $P(1,8)$, $\frac{dy}{dx} = 3(1)^{\frac{1}{2}} + \frac{16}{1^2} - 7 = 12$ [ii) Gradient of normal $= -\frac{1}{12}$ M1 J $y - 8 = -\frac{1}{12}(x-1) \Rightarrow 12y - 96 = -x + 1$ $\Rightarrow 12y + x = 97$ (iii) $\int 3x^{\frac{1}{2}} + \frac{16}{x^2} - 7 dx =$ $\dots = 3\frac{x^{\frac{3}{2}}}{\frac{3}{2}} + 16\frac{x^{-1}}{-1} - 7x + c$ (iii) $y = 2x^{\frac{3}{2}} - 16x^{-1} - 7x + c$ When $x = 1, y = 8 \Rightarrow 8 = 2 - 16 - 7 + c$ When $x = 1, y = 8 \Rightarrow 8 = 2 - 16 - 7 + c$ $y = 2x^{\frac{3}{2}} - 16x^{-1} - 7x + 29$ A1 3 Accept $c = 29$ after (*), including $y =$,	(iii)	$\frac{d^2 y}{dx^2} = 3 \times \frac{1}{2} x^{-\frac{1}{2}} + 16 \times (-2) x^{-3} - 0$	M1		A power decreased by 1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$\frac{d^2 y}{dx^2} = \frac{3}{2} x^{-\frac{1}{2}}; -32x^{-3}$		3	
Minimum since $y''(4) > 0$ $E1$ 2candidate's sign of $y''(4)$ [Alternative: Finds the sign of $y'(x)$ either side of the point where $x=4$, need evidence rather than just a statement: (M1) Correct fl conclusion with valid reason $E1\sqrt{1}$ [In both, condone absent statement $y'(4)=0$](b)(i)At $P(1,8)$, $\frac{dy}{dx} = 3(1)^{\frac{1}{2}} + \frac{16}{1^2} - 7 = 12$ B11AG Be convinced(ii)Gradient of normal = $-\frac{1}{12}$ M1Use of or stating $m \times m' = -1$ Equation of normal is $y-8 = m[x-1]$ M1Can be awarded even if $m=12$ $y-8 = -\frac{1}{12}(x-1) \Rightarrow 12y - 96 = -x+1$ A13 $\Rightarrow 12y + x = 97$ A13(c)(i) $\int 3x^{\frac{1}{2}} + \frac{16}{x^2} - 7 dx =$ M1 $\dots = 3\frac{x^{\frac{3}{2}}}{2} + 16\frac{x^{-1}}{-1} - 7x + c$ M1A $y = 2x^{\frac{3}{2}} - 16x^{-1} - 7x + c$ (*) $y = 2x^{\frac{3}{2}} - 16x^{-1} - 7x + c$ M1 $y = 2x^{\frac{3}{2}} - 16x^{-1} - 7x + 29$ A1 3 Accept $c = 29$ after (*), including $y =$,	(iv)	When $x = 4$, $\frac{d^2 y}{dx^2} = \frac{3}{4} - \frac{32}{64} = \frac{1}{4}$	M1		
statement: (M1) Correct f conclusion with valid reason E1- $\sqrt{1}$ [In both, condone absent statement $y'(4)=0$] (b)(i) At $P(1,8)$, $\frac{dy}{dx} = 3(1)^{\frac{1}{2}} + \frac{16}{1^2} - 7 = 12$ B1 1 AG Be convinced (ii) Gradient of normal = $-\frac{1}{12}$ M1 Use of or stating $m \times m' = -1$ Equation of normal is $y-8 = m[x-1]$ M1 Can be awarded even if m=12 $y-8 = -\frac{1}{12}(x-1) \Rightarrow 12y-96 = -x+1$ $\Rightarrow 12y+x=97$ A1 3 Any correct form of the equation (c)(i) $\int 3x^{\frac{1}{2}} + \frac{16}{x^2} - 7 dx =$ $\dots = 3\frac{x^{\frac{3}{2}}}{\frac{3}{2}} + 16\frac{x^{-1}}{-1} - 7x + c$ (*) B1 $$ One power correct. (ii) $y = 2x^{\frac{3}{2}} - 16x^{-1} - 7x + c$ (*) B1 $$ B1 $$ Use of or stating $m \times m' = -1$ When $x = 1, y = 8 \Rightarrow 8 = 2-16-7+c$ M1 Substitute (1,8) in attempt to find constant of integration $y = 2x^{\frac{3}{2}} - 16x^{-1} - 7x + 29$ A1 3 Accept $c = 29$ after (*), including $y =$,		Minimum since $y''(4) > 0$	E1√	2	*
(ii) Gradient of normal = $-\frac{1}{12}$ HI Equation of normal is $y - 8 = m[x - 1]$ $y - 8 = -\frac{1}{12}(x - 1) \Rightarrow 12y - 96 = -x + 1$ $\Rightarrow 12y + x = 97$ (c)(i) $\int 3x^{\frac{1}{2}} + \frac{16}{x^2} - 7 dx =$ $\dots = 3\frac{x^{\frac{3}{2}}}{\frac{3}{2}} + 16\frac{x^{-1}}{-1} - 7x + c$ (ii) $y = 2x^{\frac{3}{2}} - 16x^{-1} - 7x + c$ When $x = 1, y = 8 \Rightarrow 8 = 2 - 16 - 7 + c$ When $x = 1, y = 8 \Rightarrow 8 = 2 - 16 - 7 + c$ $y = 2x^{\frac{3}{2}} - 16x^{-1} - 7x + 29$ M1 When $x = 1, y = 8 \Rightarrow 8 = 2 - 16 - 7 + c$ M1 $y = 2x^{\frac{3}{2}} - 16x^{-1} - 7x + 29$ M1 $y = 2x^{\frac{3}{2}} - 16x^{-1} - 7x + 29$		statement: (M1) Correct ft conclusion with		-	•
Image: Constant of the equation of normal is $y-8 = m[x-1]$ M1 $m \times m' = -1$ Equation of normal is $y-8 = m[x-1]$ M1Can be awarded even if $m=12$ $y-8 = -\frac{1}{12}(x-1) \Rightarrow 12y-96 = -x+1$ A1Any correct form of the equation $\Rightarrow 12y + x = 97$ A1A1Any correct form of the equation(c)(i) $\int 3x^{\frac{1}{2}} + \frac{16}{x^2} - 7 dx =$ M1Any correct form of the equation $\dots = 3\frac{x^{\frac{3}{2}}}{\frac{3}{2}} + 16\frac{x^{-1}}{-1} - 7x + c$ M1Any correct form of the equation(ii) $y = 2x^{\frac{3}{2}} - 16x^{-1} - 7x + c$ M1Any correct is an with '+c'. $(y = 2x^{\frac{3}{2}} - 16x^{-1} - 7x + c$ M1Substitute. (1,8) in attempt to find constant of integration $y = 2x^{\frac{3}{2}} - 16x^{-1} - 7x + 29$ A1AAccept $c = 29$ after (*), including $y =$,	(b)(i)	At $P(1,8)$, $\frac{dy}{dx} = 3(1)^{\frac{1}{2}} + \frac{16}{1^2} - 7 = 12$	B1	1	AG Be convinced
(c)(i) $y = 2x^{\frac{3}{2}} - 16x^{-1} - 7x + 29$ A1	(ii)	Gradient of normal = $-\frac{1}{12}$	M1		0
(c)(i) $ \begin{array}{c c} \Rightarrow 12y + x = 97 \\ f & 3x^{\frac{1}{2}} + \frac{16}{x^2} - 7 dx = \\ \vdots & \vdots & 3x^{\frac{3}{2}} + 16 \frac{x^{-1}}{-1} - 7x + c \\ \vdots & \vdots & y = 2x^{\frac{3}{2}} - 16x^{-1} - 7x + c \\ y = 2x^{\frac{3}{2}} - 16x^{-1} - 7x + 29 \end{array} $ A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A		Equation of normal is $y - 8 = m[x - 1]$	M1		Can be awarded even if m=12
(c)(i) $\int 3x^{\frac{1}{2}} + \frac{16}{x^2} - 7 dx =$ $\dots = 3\frac{x^{\frac{3}{2}}}{\frac{3}{2}} + 16\frac{x^{-1}}{-1} - 7x + c$ (ii) $y = 2x^{\frac{3}{2}} - 16x^{-1} - 7x + c$ (*) H^{1} $A_{2,1,0}$ $\int 3$ $A_{1} \text{ if } 2 \text{ of } 3 \text{ terms correct}.$ $A_{2} \text{ correct}.$ $Y = 2x^{\frac{3}{2} - 16x^{-1} - 7x + 29$ $A_{1} \text{ or correct.}$ $A_{2} \text{ correct}.$ $A_{3} \text{ correct}.$ $A_{4} cor$			A1	3	Any correct form of the equation
(ii) 2 $y = 2x^{\frac{3}{2}} - 16x^{-1} - 7x + c$ (*) $y = 2x^{\frac{3}{2}} - 16x^{-1} - 7x + c$ (*) $y = 2x^{\frac{3}{2}} - 16x^{-1} - 7x + 29$ $x = 2x^{\frac{3}{2}} - 16x^{-1} - 7x + 29$	(c)(i)	$\int 3x^{\frac{1}{2}} + \frac{16}{x^2} - 7 \mathrm{d}x =$			
When $x = 1, y = 8 \Rightarrow 8 = 2 - 16 - 7 + c$ M1('y =' PI by next line) $y = 2x^{\frac{3}{2}} - 16x^{-1} - 7x + 29$ A13Accept c = 29 after (*), including y =,		2	A2,1,0	3	A1 if 2 of 3 terms correct candidate's negative integer k Condone absence of "+ c "
$y = 2x^{\frac{3}{2}} - 16x^{-1} - 7x + 29$ A1 Constant of integration $Accept c = 29 \text{ after (*), including } y =,$	(ii)	$y = 2x^{\frac{3}{2}} - 16x^{-1} - 7x + c \qquad (*)$	B1√		coefficients and with '+c'.
A A A A A A A A A A A A A A A A A A A			M1		
- MAILAI		$y = 2x^{\frac{3}{2}} - 16x^{-1} - 7x + 29$	A1	3	

6

				GCE Mark Scheme, 2006 June series - That is cloud Comments Need(I) and one of (II),(III)
			AQA C	GCE Mark Scheme, 2006 June series - Unather Scheme, 2006 June series - Unather School Scheme, 2006 June series - Unather Scheme, 2006 June series - U
<u>2 (cont</u>		N7 1	TAL	40
estion	Solution	Marks	Total	Comments
8(a)	Stretch (I) in x-direction (II) scale factor 2 (III)	M1 A1	2	Need(I) and one of (II),(III) M0 if more than one transformation
(b)	$\tan^{-1} 3 = 1.2(49) (=\alpha)$	M1		tan ⁻¹ 3 [PI by 71.(56)°]
	$\tan^{-1} 3 = 1.2(49) (=\alpha)$ $\{\frac{1}{2}x =\} \pi + \alpha;$	m1		Correct quadrant; condone degrees or mix
	$\frac{1}{2}x = 1.249; 4.3906$			
	x = 2.498 = 2.50 to 3 sf	A1		Condone 2.5 otherwise deduct <u>max</u> of 1
	x = 8.781 = 8.78 to 3 sf	A1	4	mark throughout Q8 from A marks if 'correct' rads. but to 2sf or final answers in degrees. (143°, 503°)
				As usual, accept greater accuracy answers. Ignore extra values outside the given interval (0 to12.6). If > 2 values inside interval lose an A mark for each one.
				NB M1m0A1A0 is possible
	SC after M0 for error $\tan x = 6$; Either $x = 1.40(5)$, $4.54(7)$, $7.68(8)$, $10.8(3)$) or $x = 8$:0.5°, 260 	
(c)	$\cos\theta = 0, \sin\theta - 3\cos\theta = 0$	M1		Need both
	$ \tan \theta = \frac{\sin \theta}{\cos \theta} \text{ or } \tan \theta = 3 $	M1		$ \tan \theta = \frac{\sin \theta}{\cos \theta} \text{ seen/used} $
	$\cos\theta = 0 \implies \theta = \frac{\pi}{2} = 1.57(07)$	B1		Accept $\frac{\pi}{2}$
	or $\theta = \frac{3\pi}{2} = 4.71(23)$	B1		Accept $\frac{3\pi}{2}$
	$\tan \theta = 3 \Longrightarrow$ $\theta = 1.249; 4.3906 = 1.25, 4.39 \text{ to } 3\text{sf}$	A1√		If not correct, ft on (b) NB M0M1(B0B0)A1ft is possible
			5	90°; 270°; 71.5(6)°; 251.5(6)°
	Total		11	
	TOTAL	1	75	T